using System;
using System.Collections.Generic;
using System.Linq;
namespace DataStructures.Heap;
/// <summary>
/// This class implements min-max heap.
/// It provides functionality of both min-heap and max-heap with the same time complexity.
/// Therefore it provides constant time retrieval and logarithmic time removal
/// of both the minimum and maximum elements in it.
/// </summary>
/// <typeparam name="T">Generic type.</typeparam>
public class MinMaxHeap<T>
{
private readonly List<T> heap;
/// <summary>
/// Initializes a new instance of the <see cref="MinMaxHeap{T}" /> class that contains
/// elements copied from a specified enumerable collection and that uses a specified comparer.
/// </summary>
/// <param name="collection">The enumerable collection to be copied.</param>
/// <param name="comparer">The default comparer to use for comparing objects.</param>
public MinMaxHeap(IEnumerable<T>? collection = null, IComparer<T>? comparer = null)
{
Comparer = comparer ?? Comparer<T>.Default;
collection ??= Enumerable.Empty<T>();
heap = collection.ToList();
for (var i = Count / 2 - 1; i >= 0; --i)
{
PushDown(i);
}
}
/// <summary>
/// Gets the <see cref="IComparer{T}" />. object that is used to order the values in the <see cref="MinMaxHeap{T}" />.
/// </summary>
public IComparer<T> Comparer { get; }
/// <summary>
/// Gets the number of elements in the <see cref="MinMaxHeap{T}" />.
/// </summary>
public int Count => heap.Count;
/// <summary>
/// Adds an element to the heap.
/// </summary>
/// <param name="item">The element to add to the heap.</param>
public void Add(T item)
{
heap.Add(item);
PushUp(Count - 1);
}
/// <summary>
/// Removes the maximum node from the heap and returns its value.
/// </summary>
/// <exception cref="InvalidOperationException">Thrown if heap is empty.</exception>
/// <returns>Value of the removed maximum node.</returns>
public T ExtractMax()
{
if (Count == 0)
{
throw new InvalidOperationException("Heap is empty");
}
var max = GetMax();
RemoveNode(GetMaxNodeIndex());
return max;
}
/// <summary>
/// Removes the minimum node from the heap and returns its value.
/// </summary>
/// <exception cref="InvalidOperationException">Thrown if heap is empty.</exception>
/// <returns>Value of the removed minimum node.</returns>
public T ExtractMin()
{
if (Count == 0)
{
throw new InvalidOperationException("Heap is empty");
}
var min = GetMin();
RemoveNode(0);
return min;
}
/// <summary>
/// Gets the maximum value in the heap, as defined by the comparer.
/// </summary>
/// <exception cref="InvalidOperationException">Thrown if heap is empty.</exception>
/// <returns>The maximum value in the heap.</returns>
public T GetMax()
{
if (Count == 0)
{
throw new InvalidOperationException("Heap is empty");
}
return heap[GetMaxNodeIndex()];
}
/// <summary>
/// Gets the minimum value in the heap, as defined by the comparer.
/// </summary>
/// <exception cref="InvalidOperationException">Thrown if heap is empty.</exception>
/// <returns>The minimum value in the heap.</returns>
public T GetMin()
{
if (Count == 0)
{
throw new InvalidOperationException("Heap is empty");
}
return heap[0];
}
/// <summary>
/// Finds maximum value among children and grandchildren of the specified node.
/// </summary>
/// <param name="index">Index of the node in the Heap array.</param>
/// <returns>Index of the maximum descendant.</returns>
private int IndexOfMaxChildOrGrandchild(int index)
{
var descendants = new[]
{
2 * index + 1,
2 * index + 2,
4 * index + 3,
4 * index + 4,
4 * index + 5,
4 * index + 6,
};
var resIndex = descendants[0];
foreach (var descendant in descendants)
{
if (descendant >= Count)
{
break;
}
if (Comparer.Compare(heap[descendant], heap[resIndex]) > 0)
{
resIndex = descendant;
}
}
return resIndex;
}
/// <summary>
/// Finds minumum value among children and grandchildren of the specified node.
/// </summary>
/// <param name="index">Index of the node in the Heap array.</param>
/// <returns>Index of the minimum descendant.</returns>
private int IndexOfMinChildOrGrandchild(int index)
{
var descendants = new[] { 2 * index + 1, 2 * index + 2, 4 * index + 3, 4 * index + 4, 4 * index + 5, 4 * index + 6 };
var resIndex = descendants[0];
foreach (var descendant in descendants)
{
if (descendant >= Count)
{
break;
}
if (Comparer.Compare(heap[descendant], heap[resIndex]) < 0)
{
resIndex = descendant;
}
}
return resIndex;
}
private int GetMaxNodeIndex()
{
return Count switch
{
0 => throw new InvalidOperationException("Heap is empty"),
1 => 0,
2 => 1,
_ => Comparer.Compare(heap[1], heap[2]) > 0 ? 1 : 2,
};
}
private bool HasChild(int index) => index * 2 + 1 < Count;
private bool IsGrandchild(int node, int grandchild) => grandchild > 2 && Grandparent(grandchild) == node;
/// <summary>
/// Checks if node at index belongs to Min or Max level of the heap.
/// Root node belongs to Min level, its children - Max level,
/// its grandchildren - Min level, and so on.
/// </summary>
/// <param name="index">Index to check.</param>
/// <returns>true if index is at Min level; false if it is at Max Level.</returns>
private bool IsMinLevelIndex(int index)
{
// For all Min levels, value (index + 1) has the leftmost bit set to '1' at even position.
const uint minLevelsBits = 0x55555555;
const uint maxLevelsBits = 0xAAAAAAAA;
return ((index + 1) & minLevelsBits) > ((index + 1) & maxLevelsBits);
}
private int Parent(int index) => (index - 1) / 2;
private int Grandparent(int index) => ((index - 1) / 2 - 1) / 2;
/// <summary>
/// Assuming that children sub-trees are valid heaps, pushes node to lower levels
/// to make heap valid.
/// </summary>
/// <param name="index">Node index.</param>
private void PushDown(int index)
{
if (IsMinLevelIndex(index))
{
PushDownMin(index);
}
else
{
PushDownMax(index);
}
}
private void PushDownMax(int index)
{
if (!HasChild(index))
{
return;
}
var maxIndex = IndexOfMaxChildOrGrandchild(index);
// If smaller element are put at min level (as result of swaping), it doesn't affect sub-tree validity.
// If smaller element are put at max level, PushDownMax() should be called for that node.
if (IsGrandchild(index, maxIndex))
{
if (Comparer.Compare(heap[maxIndex], heap[index]) > 0)
{
SwapNodes(maxIndex, index);
if (Comparer.Compare(heap[maxIndex], heap[Parent(maxIndex)]) < 0)
{
SwapNodes(maxIndex, Parent(maxIndex));
}
PushDownMax(maxIndex);
}
}
else
{
if (Comparer.Compare(heap[maxIndex], heap[index]) > 0)
{
SwapNodes(maxIndex, index);
}
}
}
private void PushDownMin(int index)
{
if (!HasChild(index))
{
return;
}
var minIndex = IndexOfMinChildOrGrandchild(index);
// If bigger element are put at max level (as result of swaping), it doesn't affect sub-tree validity.
// If bigger element are put at min level, PushDownMin() should be called for that node.
if (IsGrandchild(index, minIndex))
{
if (Comparer.Compare(heap[minIndex], heap[index]) < 0)
{
SwapNodes(minIndex, index);
if (Comparer.Compare(heap[minIndex], heap[Parent(minIndex)]) > 0)
{
SwapNodes(minIndex, Parent(minIndex));
}
PushDownMin(minIndex);
}
}
else
{
if (Comparer.Compare(heap[minIndex], heap[index]) < 0)
{
SwapNodes(minIndex, index);
}
}
}
/// <summary>
/// Having a new node in the heap, swaps this node with its ancestors to make heap valid.
/// For node at min level. If new node is less than its parent, then it is surely less then
/// all other nodes on max levels on path to the root of the heap. So node are pushed up, by
/// swaping with its grandparent, until they are ordered correctly.
/// For node at max level algorithm is analogical.
/// </summary>
/// <param name="index">Index of the new node.</param>
private void PushUp(int index)
{
if (index == 0)
{
return;
}
var parent = Parent(index);
if (IsMinLevelIndex(index))
{
if (Comparer.Compare(heap[index], heap[parent]) > 0)
{
SwapNodes(index, parent);
PushUpMax(parent);
}
else
{
PushUpMin(index);
}
}
else
{
if (Comparer.Compare(heap[index], heap[parent]) < 0)
{
SwapNodes(index, parent);
PushUpMin(parent);
}
else
{
PushUpMax(index);
}
}
}
private void PushUpMax(int index)
{
if (index > 2)
{
var grandparent = Grandparent(index);
if (Comparer.Compare(heap[index], heap[grandparent]) > 0)
{
SwapNodes(index, grandparent);
PushUpMax(grandparent);
}
}
}
private void PushUpMin(int index)
{
if (index > 2)
{
var grandparent = Grandparent(index);
if (Comparer.Compare(heap[index], heap[grandparent]) < 0)
{
SwapNodes(index, grandparent);
PushUpMin(grandparent);
}
}
}
private void RemoveNode(int index)
{
SwapNodes(index, Count - 1);
heap.RemoveAt(Count - 1);
if (Count != 0)
{
PushDown(index);
}
}
private void SwapNodes(int i, int j)
{
var temp = heap[i];
heap[i] = heap[j];
heap[j] = temp;
}
}